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SUMMARY 
The theory of an ‘ ideal dissociating ’ gas developed by Lighthill 

(1957) for conditions of thermodynamic equilibrium is extended 
to non-equilibrium conditions by postulating a simple rate equation 
for the dissociation process (including the effects of recombination). 
This equation contains the ‘ equilibrium ’ parameters of the 
Lighthill theory plus a further ‘ non-equilibrium ’ parameter which 
determines the time scale of the dissociation phenomena. 

The  behaviour of this gas is investigated in flow through a 
strong normal shock wave and past a bluff body. The  assumption 
is made that the gas receives complete excitation of its rotational 
and vibrational degrees of freedom in an infinitesimally thin 
region according to the familiar Rankine-Hugoniot shock wave 
relations before dissociation begins. The  variation of the relevant 
thermodynamic variables downstream of this region is then 
computed in a few particular cases. The  method used in the latter 
case is an extension of the ‘Newtonian’ theory of hypersonic 
inviscid flow. In  particular, the case of a sphere is treated in 
some detail. The  variation of the shock shape and the ‘ stand-off ’ 
distance with the coefficient A, which is the ratio of the sphere 
diameter to the length scale of the dissociation process, is exhibited 
for conditions extending from completely undissociated flow to 
dissociated flow in thermal equilibrium. Results would indicate 
that significant and observable changes from the undissociated 
values occur, although values for the non-equilibrium parameter 
are not, at present, available. 

1. INTRODUCTION 
Lighthill (1957) has considered the fluid dynamical problems associated 

with a dissociating gas under conditions of thermodynamic equilibrium, 
while referring to papers in preparation on the quasi-equilibrium and 
non-equilibrium conditions. I n  order to make the problem tractable an 
idealized gas was postulated which exhibits, during dissociation, the main 
features of a real dissociating gas such as nitrogen or oxygen. This gas 
was called ‘an  ideal dissociating gas’. I n  this paper, two problems will 
be considered in which the behaviour of this gas is studied under non- 
equilibrium thermodynamic conditions. Thus, we attack the problem 
originally proposed (Lighthill 1957) for part I11 of the series of which that 
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paper was part I. To do this, it is necessary to postulate the rate of 
dissociation of the molecules into atoms, under conditions far removed 
from equilibrium. At present the form of such a relation and the values 
of the relevant parameters concerned with its non-equilibrium behaviour 
are not known, although attempts have been made to deduce such a relation 
(see, for example, Wood 1956 and Evans 1956). In  view of this uncertainty 
a somewhat simplified form of the dissociation rate has been assumed 
which gives the correct equilibrium conditions, as well as the most important 
features of the non-equilibrium ones. This relation is discussed in $2. 
It  will be seen in the later sections of this paper, however, that the exact 
form of this relation may not give results which differ very much from the 
present one, owing to the predominance of one factor over all others. This 
is the exponential factor in the Maxwellian distribution of the energy in 
the molecules and atoms. 

The two problems here considered are, first, the flow of an ideal 
dissociating gas, assumed initially undissociated, through a strong normal 
shock wave and, secondly, the flow of the same gas past a bluff body. The 
latter problem involves a further generalization of the author’s theory of 
flow past bluff bodies on the so-called ‘ Newtonian ’ assumptions. 

The gas is assumed in both cases to have its rotational and vibrational 
modes fully excited by passing through an infinitesimally thin shock wave 
behind which the gas begins to dissociate. In  other words we assume 
the time scale for the changes in the rotational and vibrational energy of the 
molecules is small compared with that for changes in the amount of 
dissociation in the gas. When undissociated, the Lighthill ideal dissociating 
gas behaves like a perfect diatomic gas with constant specific heats but 
with only half the vibrational energy as given by the principle of equi- 
partition of energy. Thus the ratio of specific heats when undissociated 
is Q. If initially, the flow has a velocity U and density p,,, passage through 
a normal shock wave, in the absence of dissociation, reduces the velocity 
to +U, and increases the density and pressure to 7p0 and ;poU2 respectively. 
The effect of dissociation is then to absorb some of the energy associated 
with the translational, rotational and vibrational modes of the molecule, 
thereby reducing the temperature of the gas. The pressure itself can change 
very little since the maximum it can reach is po U2. Hence, the main effect 
of dissociation is to further increase the density behind a normal shock 
wave. In  the above argument ‘temperature’ is used to mean that 
associated with the energy in the translational modes of the molecules 
and atoms. 

On the assumption that the normal shock is strong, the main parameter 
that describes the flow through the initial shock wave is the energy per unit 
mass of gas, which is conserved through it. The amount of dissociation 
which is going to take place behind the shock then depends solely on the 
physical constants of the gas itself and this energy. In particular, only the 
ratio of this energy to the energy required to dissociate the gas and the ratio 
of a characteristic density of dissociation pD to the free stream density po 
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appear. These constants will be referred to as the ‘ equilibrium constants ’ 
since their values can be determined from equilibrium considerations alone. 
The rate at which equilibrium behind the shock wave is achieved is 
determined by a constant C. The value ( p o  C)-l gives the time scale of 
the dissociation process behind the shock wave. 

In a similar way, the changes normal to the bow shock wave of a bluff 
body take place according to the Rankine-Hugoniot relations. Momentum 
tangential to the shock wave, and hence tangential velocity, is conserved. 
Since the density behind the shock wave increases from a value 7p0 to 
higher values due to dissociation, the approximation of large density behind 
the shock used by the author (1956) and others (Chester 1956; 
Ivey, Klunker & Bowen 1948) and called the ‘ Newtonian approximation ’ 
is especially relevant. By using such an approximation it is possible to 
predict some of the geometrical properties of the flow, such as bow shock 
wave and streamline positions. In theory it is also possible to predict the 
pressure variation corrected from the crude ‘ Newtonian ’ value. In practice 
such a derivation proves rather laborious. But as the present investigation 
is based on qualitative rather than quantitative assumptions about the gas 
itself, the theory is regarded as sufficiently justified if it can predict a 
qualitative picture of the flow. 

The relevant non-equilibrium parameter in this case is denoted by A 
and is the ratio of the body size to the length scale of the dissociation 
phenomenon. For the normal shock wave the time scale of the dissociation 
process is (Cp0)-l and hence the length scale of the whole flow is U/Cp, 
where U is the free-stream velocity. Thus A = ZCpo/U where Z is the 
characteristic length of the body. For small A the body is small compared 
with the distance dissociation requires and thus for A = 0 we have the 
undissociated flow of a perfect gas with a constant ratio of specific heats 
y = 3. For large A, however, the main dissociation takes place at the 
bow shock wave, and dissociative equilibrium is maintained throughout 
the region between the shock wave and the body. Quite generally, we 
can make further predictions about the flow between shock and body by 
considering a ‘local ’ value of A which we will denote by A. The local 
length scale of the dissociation is u/Cp,, where u is the local velocity and 
hence X = ICpo/u. Near the stagnation point, X is large and hence 
dissociative equilibrium is achieved in this region. Also, on the basis of 
the approximation of the present theory, changes in the velocity along 
the streamlines are negligible and hence, near the body, where the stream- 
lines all originate in the region near the stagnation point, the velocity is 
small. Thus, near the body, X is also large and we have dissociative 
equilibrium. Proceeding outwards along the normal to the body surface 
therefore, we have dissociative equilibrium at the surface whence the 
amount of dissociation decreases until it is zero on the shock wave itself. 
From the theory, dissociation profiles between the shock and body can be 
computed, showing in detail the amount of dissociation across the ‘ shock 
layer ’ at various stations on the body. 
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The amount of dissociation between the shock and the body, since it 
increases the density of the fluid in this region, will tend to decrease the 
distance between shock and body due to the contraction of stream tubes. 
Schwarz & Eckermann (1956) infer the amount of excitation of the 
vibrational modes of the molecules of polyatomic gases from measurements 
of the ' stand-off ' distance of the shock wave from the stagnation point. 
This adds interest to the discussion ($4) of the variation of this length 
with the rate of dissociation. 

2. RATES OF DISSOCIATION 

The ideal dissociating gas has been discussed by Lighthill (1957) and 
the laws governing its equilibrium behaviour deduced. When thermo- 
dynamic equilibrium is not attained, however, it is necessary to consider 
the actual processes of molecular dissociation and atomic recombination. 
Equilibrium is achieved when the rate of dissociation of the molecules 
into atoms is equal to the rate of production of new molecules by the 
recombination of atoms. Thus, the net rate of dissociation 

where u is the ratio by weight of atoms dissociated to weight of atoms and 
molecules at a point and rD and yR denote the rates of dissociation and 
recombination respectively. In equilibrium, rD = rR and hence if we 
know either rD or rR, using the equilibrium theory (Lighthill 1957), we 
can deduce a relation between rD and rR for the ideal dissociating gas. In 
particular we shall attempt to  find a value for yo. Now dissociation of a gas 
molecule is accomplished by increasing the energy in the internal degrees 
of freedom to a point which is sufficient to overcome the binding forces 
holding the atoms together. The necessary increase in internal energy is 
achieved by transfer from other forms of energy during a collision. If the 
collisions are sufficiently violent dissociation ensues. Hence, the rate of 
dissociation rD will be to a first approximation proportional to the number 
of binary collisions of a molecule with another molecule or free atom such 
that the total energy available in the collision is sufficient to cause 
dissociation. We can therefore write 

r0 = C,(a, T)p(l  -u)e-D/klP,  (2.2) 
where p is the density, T the temperature, D is the energy of dissociation 
and R is Boltzmann's constant. Cl(u, T )  is a function yet to  be determined. 
The factor p ( l  - a )  gives the number of molecules per unit volume of the 
gas. Since we are primarily interested in binary collisions C, will, in general, 
consist of a sum of two terms, one corresponding to collisions between the 
molecules themselves and another for the collisions between atoms and 
molecules. At constant temperature the former will be proportional to 
(1 - u) and the latter to u. The factors of proportionality will depend on 
the respective collision cross-sections. An attempt to evaluate these has 
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been made by Wood (1956) and also Evans (1956) on the basis of simple 
kinetic theory. In  view of the uncertainty attached to these values however 
the assumption will be made in this paper that C, is independent of a. The 
main variation in C,, it is thought, will come from the dependence on 
temperature, which we shall assume to follow an inverse-power law. Such 
a variation is expected since the energy in many degrees of freedom (the 
rotational and vibrational energy of each colliding molecule, and their 
relative translational energy) may combine to make dissociation possible 
if their total exceeds D. The inference of an inverse-power law in such a 
case (Hinshelwood 1940) rests on the fact that the proportion of states of 
a system in which the energy, made up of n ‘ independent square terms ’, 
exceeds a value D, large compared with i n k T ,  is 

e-”lk~(D/kT)an-1/(9,- 1) !. 
However, the precise value of n which is appropriate is unknown, although 
it will be shown not to be crucial. The  value n = 7, used below, includes 
the relative translational energy but the rotational and vibrational energies 
of only one colliding molecule, on the grounds that the vibrational energies 
are not fully excited, that the molecules sometimes collide with free atoms, 
and that it is uncertain whether any mode of collision could use all the 
available energy. We therefore assume the expression for the rate of 
dissociation to be 

rD = C,(l -a)T-Se-D/kT, 

where C and s are constants. The  dependence of the results obtained 
from this formula on the exponent s can be exhibited by choosing different 
values for s in the computation (in practice, 0 and 2.5). 

From equilibrium theory (LighthiII 1956), we note that for the ideal 
dissociating gas 

in conditions of thermodynamic equilibrium, where p D  is a constant 
characteristic of the gas. This is therefore the condition rD = rB. Hence 
an expression for rR of the form 

will satisfy equilibrium conditions. Further, an expression of this form 
might be expected since recombination requires a three-body collision of 
either three atoms or two atoms and a molecule and occurs, therefore, at 
a rate proportional to the square of the density pa of free atoms. The  net 
rate of dissociation therefore becomes 

Comparison of expression (2.6) with the results of Wood (1956) and Evans 
(1956) shows that the main features agree. In these two papers different 
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expressions of the dissociation rates are deduced. Different values of s are 
obtained and also the variation of C with Q is included. The latter variation 
is however simply linear. Recombination is neglected in most of the work 
of Wood and Evans. 

The  relation (2.6) will be used throughout this paper. The variations 
of C from its constant value are probably small when compared with the 
variation of the exponential factor in (2.6) for any cases of interest. This, it 
is hoped to predict a qualitative picture of the flow in non-equilibrium 
thermodynamic conditions. 

3 .  FLOW THROUGH A NORMAL SHOCK WAVE 

(i) Equations of one-dimensional motion 
In  the region behind the Rankine-Hugoniot shock wave, the rate of 

dissociation is given by (2.6) with dldt as the total rate of change with time. 
Since the flow is steady, however, the changes are purely convective and 
we can write (2.6) in the form 

where x is the coordinate measured normal to the shock wave in a down- 
stream direction and u is the velocity of the gas in this direction. 

I n  the region behind the Rankine-Hugoniot shock wave the gas is 
assumed inviscid and without heat conduction. The  equation of state for 
the ideal dissociating gas is then 

Continuity of mass and momentum for strong shock waves requires 

where p is the pressure. The constant on tld right-hand side of these 
equations takes the value in front of the Rankine-Hugoniot shock since 
these quantities are conserved through it too. Finally the total energy 
of the gas is conserved and thus 

where i is the enthalpy of the gas. The  five equations (3.1)-(3.4) then 
determine the problem completely provided that i is known in terms of 
the other variables. For an ideal dissociating gas the internal energy e per 
unit mass is of the form 

i+&2 = $U2, (3.4) 

D 
2m 

e = 3 R T t  -a, (3 .5 )  

where m is the atomic mass. The  first term is the contribution to the 
energy from the various degrees of freedom (R is the gas constant for the 
undissociated gas) which is the same for both atoms and molecules. This 
arises from the fact that although the atoms have only three degrees of 
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freedom, their mass is only half that of the molecules. Also the molecules 
of an ideal dissociating gas have only half the energy in their vibrational 
degrees of freedom (and hence have effectively six degrees of freedom). 
The second term is the energy absorbed by dissociation. By use of (3.2) 
and (3.5), equation (3.4) yields 

(3.6) 
D a  
2m 

(4+u)RT+ qu2+ - = 4-u2. 

Furthermore, equations (3.2), (3.3) and (3.6) give 

where a new variable p = m U 2 / D  (the ratio of the kinetic energy of 
undisturbed gas to its dissociation energy) has been introduced. Equations 
(3.7) and (3.8) together with (3.1) then give 

da 
dx 
- = F(u) (3.9) 

for a certain complicated function F(cr), and the variation of u with x is 
given by 

x = 11%. (3.10) 

The thickness of the dissociation region can conveniently be defined as 

(3.11) 

where ae is the equilibrium value of the dissociation obtained from F(u) = 0, 
this being the distance required to reach 95% of the equilibrium value. 
Once the function x = x(a) is known from (3.10), it is then possible to 
obtain, by direct substitution, the values of all the other physical variables 
from (3.7), (3.8) and (3.2). 

Before the integral can be evaluated, however, it is necessary to determine 
the range of values of interest for the various parameters. The equilibrium 
constants D and pD are known and hence typical values of p and pD/po can 
be chosen. The values p = 1 and 3, and pD/po = lo6 and lo’, are used in the 
computations. The latter values are typical of the part of the atmosphere 
where the density is from a tenth to a hundredth of its sea-level value. Due 
to the exponential factor in (2.6) it is effectively only the logarithm of pD/pO 
which is important. 

The values of C and s are concerned with essentially the non-equilibrium 
conditions. C,  which is unknown, determines the length scale of the 
dissociation process. Conversely, the thickness of the dissociation region, 
as observed in any experimental work, would determine the value of C 



414 N .  C.  Freeman 

Curve 
- 

(a) 
(b) 
(4 
(4 
(el 
(f) 

which could then be used in further computations-as those in the latter 
part of this paper. The parameter s is given the values 0 and 2.5 as discussed 
above. 

P d P D  S 

1 10-6 0 0.591 
- 10-6 0 0.204 
1 10-7 o 0.645 
1 10-6 0 0.591 
1 10-6 2.5 0.591 
1 10-6 2.5 0.591 

1 

(ii) Computed results 

I n  the figures 1 to 4 various combinations of the parameters p, pD/po 
and s are used in the integration of (3.11) and the results are plotted 
for the different flow variables against a non-dimensional length scale 
x1 = ( X ~ , , C / R ~ U ~ - ~ ~ ) .  Table 1 is designed to give a key to the curves 

A 
-~ 

51 
570 
106 
- 
0.025 
0.85 

in figures 1 to 6. I n  figures 1 and 2, s = 0 and the variation of cc (figure 1) 
and the density and temperature (figure 2) are exhibited for ( u )  p = 1, 
po/pD = ( c )  p = 1, po/pD = lo-’. In 
figure 3, s = 2.5 and the other variables are as in (a )  and (b).  T h e  most 
characteristic feature of all these curves is the rapid variation near the 
Rankine-Hugoniot shock wave and the much slower variation near 
equilibrium. This is almost entirely due to the exponential form of the 
energy distribution in the gas, as can be shown by replacing all the other 
factors by suitable constant values and repeating the integration. This 
is most conveniently done by considering the temperature variation. This 
procedure was adopted for result (u )  and in figure 2 ( b )  the result obtained 
is plotted as curve ( d ) .  

( b )  p = i, po/pD 7 

Curve ( d )  represents 

(3.12) 

where Tl = 2RT/U2 and TIe is the value of T, for equilibrium under the 
conditions of (u). 

An estimate of the distance required to reach equilibrium can be obtained 
by considering the distance required for the dissociation to reach 95% of 
its equilibrium value. This value is denoted by A. A change in the total 
energy of the gas from the dissociation energy (p = 1) to half that value 
( p  = 4) causes an increase in A by a factor of the order of 10. An interesting 
feature of the flow in this region is the only slight variation of the pressure 
there (figure 4). 
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The effect of variation of the parameter s can best be seen in figure 5, 
where the ratio of u to its equilibrium value a, is plotted against xl/A. It 
will be seen that the increase in s tends to decrease the rapidity of the rise 
in u. In  order to  contrast the difference of the results of the present 
investigation with the results observed in the absence of chemical changes 
the local length scale (u-u,,)/(du/dx,) is plotted in figure 6. The  rapid 
variation just behind the shock wave is again evident, whereas such length 
scales are approximately constant in vibrational relaxation behind shock 
waves. 

Figure 1. Amount of dissociation 01 behind a normal shock wave (s = 0). 

‘7 
14t 

I1 i: 10 
30 4 0  20 

Figure 2 (a).  The variation of density behind a normal shock wave (s = 0). 
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I l c  

10 20 30 4 0  xI K )  Ol 
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Figure 2 (b) .  The variation of temperature behind a normal shock wave (s = 0). 

Figure 3. Amount of dissociation 0: behind a normal shock wave (s = 2.5). 
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20 x, 30 

Figure 4. Pressure variation behind a normal shock wave (s = 0). 

I I 1 I I I I I I 

0.1 0.2 0.3 0 4  0.5 0.6 0.7 08 ~ 1 0 . 9  10 - 
A 

0.1 0.2 0.3 0 4  0.5 0.6 0.7 08 ~ 1 0 . 9  10 - 
A 

Figure 5.  Comparison of the-shapes of the dissociation curves. - 

F.M. 2 0  
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f 

Figure 6. The length scale of the dissociation process behind a normal shock wave.. 

4. FLOW PAST BLUFF BODIES 

Having discussed the behaviour of flow through a normal shock wave 
in a uniform flow, we can now proceed further and consider the flow behind 
the bow shock wave of a bluff body. I n  the previous work it was noted 
that the density behind a strong shock wave was large and that the effect of 
dissociation was to increase it still further. The  theory developed by 
Busemann (1933, pp. 275-277), Ivey et al. (1948), and re-derived by the 
author (1956) makes use of the approximation of y near unity for 
a perfect gas with constant specific heats. Alternatively, this may be stated 
as requiring the density to be large-and, in general, this is the more correct 
statement. Since, therefore, in the dissociating gas this condition is satisfied 
more nearly than for a perfect gas, this type of approximation would seem 
to be a natural one to adopt. If therefore we use boundary layer coordinates 
x and y along and perpendicular to the body, the equations of motion, with 
viscosity and heat conduction neglected, are 

i au au uv 1 3p - - + v - + - + - - =  0, 
h ax ay r ph ax 

I a a - (puk) + - (pv'hk) = 0, ax  3-V 
Di 1 DP = 0, 
Dt p Dt 

(4.1) 

where u and v are the components of velocity in the x- and y-directions 
respectively, h dx and k dz are the elements of length in the x- and z-directions 
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respectively and D/Dt = (u/h)(a/ax) +v(a/ay). For an ideal dissociating 
gas (Lighthill 1957), 

D 
2m 

i = (4+a)RT+ -K. 

With use of the approximation (as in Freeman 1956) that the density is 
large throughout the region, (4.1) becomes 

au au 
ax ay 

1 ap u2 

3 - 7 =  

u -  +v-  = 0, 

0, 

- (puk) + - ( p h k )  = 0, a a 
ax aY 

a; ai 
ax ay 

u -  +v - = 0, 

(4.3 1 

(4.4) 

(4.5) 

(4.6). 

since changes between the shock and the body are large compared with 
those along the body. In terms of the stream function $, for which 
puk = a$/ay, pvhk = - a$/ax, we have 

u = u($), -- a P -  - u i = I($).  a+ rk' (4.7) 

If, as assumed in the previous paper, the streamlines and shock lie close 
to the body, (4.7) gives p (the Newtonian plus centrifugal value as in 
Freeman 1956) in terms x and +. From (4.2), 

RT = I ( $ ) - - E  - { s > 4 : , *  

and, by the equation of state of the gas (3.2), 

(4.9) 

where I ($)  is the value of the enthalpy on the streamline $ = const. 
Finally, using the equation (2.6) for the rate of dissociation, we obtain 

(4.10) 

where h = h(x)  in this approximation. The equation (4.10) together with 
(4.7), (4.8) and (4.9) becomes a first-order differential equation which 
can be solved along each streamline, i.e. for each value of JI. The values 
of u($) and I ($)  can be deduced from their values on the shock wave where 
the streamline $ crosses it. For this purpose, the shock wave can be assumed 
to lie along the body itself. 

2 D Z  
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Having in this way obtained the amount of dissociation along each 
streamline we then find it possible to obtain the position$ of the shock wave 
and streamlines from the formula 

Y = f&* O P  

for x constant. This may be written 

(4.11) 

(4.12) 

which can be evaluated when the solutions of (4.10) are known. The theory 
will again break down in regions where p becomes small, or p becomes 
small, as noted in the previous paper (Freeman 1956). This occurs at 
some point on most bodies, since the centrifugal forces tend to decrease 
the pressure at the body surface. 

Near the body, the velocity u is small due to the fact that the streamlines 
there originate at the stagnation point. In the case of two-dimensional 
flow this requires a higher approximation to u to be found to make (4.12) 
converge, although this is not necessary (see Freeman 1956) in the three- 
dimensional case. Since the condition u + 0 at the body requires that 
the terms in the curly bracket of (4.10) should vanish, we infer that 
dissociative equilibrium is achieved in this region. Thus along the body 
itself the amount of dissociation is determined by 

(4.13) 

Physically this means that the time scale of the flow is so large that the gas 
has time to adjust itself to equilibrium. If this is the case, it is possible to 
obtain a along I/J = 0, as the variation of p ( x ,  #) is already known. Hence 
it is relatively easy to obtain a second approximation to u near the wall by 
retaining the pressure term in the first equation of (4.1) to  a first 
approximation and putting z,b = 0. Hence 

(4.14) 

where p is determined by (4.9). It  is possible to develop the theory for the 
two-dimensional flow provided the above higher approximation is 
introduced. 

In the following, however, we concern ourselves solely with axially 
symmetric bluff bodies since these are likely to be the most important 
from a practical viewpoint. Further, we shall consider the particular case 
,of a sphere. This is the simplest type of body and will give the behaviour 
in regions near the stagnation point correctly for all bluff bodies with the 
same local radius of curvature. The approximation does however break 
down (Freeman 1956) before the streamlines reach an angle of 60" from 
the front stagnation point due to the decrease in pressure along the body. 
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For a sphere of radius a, we introduce the new variable f defined by + = +po Ua2sin2[. This gives u = Usin.$, I = +U2cos2[ and 

}Po u2 P = { 3sine 
sin 38 + sin3 f (4.15) 

(see Freeman 1956), where 8 is the angle measured from the front stagnation 
point. Equation (4.10) may then be written in the form 

where 
sin38+sin3t 

3 sin 8 sin t cos2 
} do. 

Here, we have assumed that s = 0 and written pl = pcos2t .  
integral can be evaluated to give 

The latter 

2aCpo [8 - f + sin 28 - sin 2f + sin3 .$ log(tan +8/tan + f ) ]  . (4.17) 
U 3 sin f cos2 

Substituting in (4.16) the value of 8 from (4.17), we obtain a differential 
equation in a and 0 along the streamline .$ = constant. This must be 
solved numerically however since (4.17) gives only an implicit relation 
for 8 and equation (4.16) is extremely complex. When (4.16) is solved, 
the position of the streamlines may be obtained from 

@ = -  

(4.18) 

and the position of the shock is then derived by putting t = 8 in (4.18). 
Near the front stagnation point, it is possible to  extend the theory a little 
further. In this region, since sinf -5 and cost- 1,  (4.16) may be written 

and (4.18) simply becomes 

(4.20) 

Assuming that a is a function of 0 only, we then have 

and from (4.20) 

(4.22) 
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The stand-off distance, 8, is then given by putting 0 = 5 in (4.22)) and hence 
we obtain 

8 1 oo (1 +GC)(I - [alp]) d@ 
- = -  j 
a 2A ( 4 t a ) ( l  +[@/A])' ' (4.23) 

where 

5. NUMERICAL COMPUTATIONS 

In  the preceding section, a theory has been developed to give the flow 
pattern for a uniform stream of an ideal dissociating gas past a sphere. 
In view of the complex nature of the equations, however, it was not possible 
to state explicitly any results. It is necessary therefore to  continue by 
adopting numerical methods and restricting consideration to particular 
cases. In view of the fact that probably most of the variation is determined 
by the exponential factor, it was decided to take one particular flow (with 
p = 1, po/pD = 10-6) and attempt to exhibit the dependence on the 
coefficient A which determines the effective time scale of the dissociative 
process. The results obtained are exhibited in figures 7 to 11. Figure 7 

Figure 7. The  amount of dissociation along the streamline 5 = 5" for various values 
of A in flow past a sphere (p = 1, po/po = 

shows a typical result for the dissociation along a streamline (,$ = 5.). 
It will be noticed that the variation along each streamline is similar to that 
behind a normal shock wave. The rate at which dissociation takes place 
however depends very much on the value of the time scale factor A. For 
A = 0, we obtain the solution for a perfect gas with y = Q, whereas for 
large A we approach the solution for a gas in dissociative equilibrium. 
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8=10° 0=20° 
(4 (b )  

Figure 8. The dissociation profiles between the shock wave and the surface of the 
sphere (p = 1, p o / p o  = lo+). 

t 

Figure 9. The  amount of dissociation a along the dividing streamline between the 
shock wave and the stagnation point for various values of A(p = 1, p o / p o  = lo-'). 
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Figure 10. The shock shape for various values of A(p = 1, po/po = lo-'). 
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Figure 8 shows the dissociation profiles at 9 = 10" and 20". The dissociation 
begins to be important closer and closer to the shock wave (f = 0) as A is 
increased. For the smaller values of A ( < 1)  the dissociation takes place 
almost completely in the region near the body where the velocities are small. 
In figure 9, the results obtained at the stagnation point from equations (4.21 1, 
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and (4.22) are plotted to show the variation along the dividing streamline 
of u, the amount of dissociation. The rapid rise of u in the regions of low 
velocity when A is small is again evident. From a physical viewpoint 
however, figures 10 and 11 probably give the most useful information. 
The distance of the shock wave from the body can be easily measured from 
Schlieren or shadow photographs and consequently any variation with 
dissociation observed. In  figure 10, the distance of the shock wave away 
from the body for various values of A is shown, and in figure 11 the stand-off 
distance itself is plotted as a function of A. I t  will be seen that between 
the limits of a gas with constant specific heats and a dissociated gas in 
thermodynamic equilibrium the distance of the shock wave away from the 
body can change by as much as 50%. It is hoped that these results, although 
only of limited application since they are obtained in this one particular 
case, are of value in showing that appreciable changes in the geometry of the 
flow field may be expected. 

The author wishes to express his sincere thanks to Professor M. J. 
Lighthill, F.R. S., for his help and encouragement during the preparation 
of this paper. This paper is published by permission of The Director, 
The National Physical Laboratory. 
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